0 Read eBook for: statistics and machine learning methods for ehr data [PDF]

Statistics And Machine Learning Methods For Ehr Data

Statistics and Machine Learning Methods for EHR Data PDF

Get This Book

Author: Hulin Wu
Publisher: CRC Press
ISBN: 1000260968
Size: 78.40 MB
Format: PDF, ePub
Category : Business & Economics
Languages : en
Pages : 313
View: 2295


The use of Electronic Health Records (EHR)/Electronic Medical Records (EMR) data is becoming more prevalent for research. However, analysis of this type of data has many unique complications due to how they are collected, processed and types of questions that can be answered. This book covers many important topics related to using EHR/EMR data for research including data extraction, cleaning, processing, analysis, inference, and predictions based on many years of practical experience of the authors. The book carefully evaluates and compares the standard statistical models and approaches with those of machine learning and deep learning methods and reports the unbiased comparison results for these methods in predicting clinical outcomes based on the EHR data. Key Features: Written based on hands-on experience of contributors from multidisciplinary EHR research projects, which include methods and approaches from statistics, computing, informatics, data science and clinical/epidemiological domains. Documents the detailed experience on EHR data extraction, cleaning and preparation Provides a broad view of statistical approaches and machine learning prediction models to deal with the challenges and limitations of EHR data. Considers the complete cycle of EHR data analysis. The use of EHR/EMR analysis requires close collaborations between statisticians, informaticians, data scientists and clinical/epidemiological investigators. This book reflects that multidisciplinary perspective.

Medinfo 2019 Health And Wellbeing E Networks For All

MEDINFO 2019  Health and Wellbeing e Networks for All PDF

Get This Book

Author: L. Ohno-Machado
Publisher: IOS Press
ISBN: 164368003X
Size: 49.47 MB
Format: PDF
Category : Medical
Languages : en
Pages : 2076
View: 7728


Combining and integrating cross-institutional data remains a challenge for both researchers and those involved in patient care. Patient-generated data can contribute precious information to healthcare professionals by enabling monitoring under normal life conditions and also helping patients play a more active role in their own care. This book presents the proceedings of MEDINFO 2019, the 17th World Congress on Medical and Health Informatics, held in Lyon, France, from 25 to 30 August 2019. The theme of this year’s conference was ‘Health and Wellbeing: E-Networks for All’, stressing the increasing importance of networks in healthcare on the one hand, and the patient-centered perspective on the other. Over 1100 manuscripts were submitted to the conference and, after a thorough review process by at least three reviewers and assessment by a scientific program committee member, 285 papers and 296 posters were accepted, together with 47 podium abstracts, 7 demonstrations, 45 panels, 21 workshops and 9 tutorials. All accepted paper and poster contributions are included in these proceedings. The papers are grouped under four thematic tracks: interpreting health and biomedical data, supporting care delivery, enabling precision medicine and public health, and the human element in medical informatics. The posters are divided into the same four groups. The book presents an overview of state-of-the-art informatics projects from multiple regions of the world; it will be of interest to anyone working in the field of medical informatics.

Deep Learning Techniques For Biomedical And Health Informatics

Deep Learning Techniques for Biomedical and Health Informatics PDF

Get This Book

Author: Sujata Dash
Publisher: Springer Nature
ISBN: 3030339661
Size: 77.38 MB
Format: PDF, ePub
Category : Technology & Engineering
Languages : en
Pages : 383
View: 3332


This book presents a collection of state-of-the-art approaches for deep-learning-based biomedical and health-related applications. The aim of healthcare informatics is to ensure high-quality, efficient health care, and better treatment and quality of life by efficiently analyzing abundant biomedical and healthcare data, including patient data and electronic health records (EHRs), as well as lifestyle problems. In the past, it was common to have a domain expert to develop a model for biomedical or health care applications; however, recent advances in the representation of learning algorithms (deep learning techniques) make it possible to automatically recognize the patterns and represent the given data for the development of such model. This book allows new researchers and practitioners working in the field to quickly understand the best-performing methods. It also enables them to compare different approaches and carry forward their research in an important area that has a direct impact on improving the human life and health. It is intended for researchers, academics, industry professionals, and those at technical institutes and R&D organizations, as well as students working in the fields of machine learning, deep learning, biomedical engineering, health informatics, and related fields.

Principles Of Clinical Cancer Research

Principles of Clinical Cancer Research PDF

Get This Book

Author: Loren K. Mell, MD
Publisher: Springer Publishing Company
ISBN: 1617052396
Size: 49.12 MB
Format: PDF, Docs
Category : Medical
Languages : en
Pages : 576
View: 7562


Principles of Clinical Cancer Research provides comprehensive coverage of the fundamentals of clinical cancer research, including the full spectrum of methodologies used in the field. For those involved in research or considering research careers, this book offers a mix of practical advice and analytical tools for effective training in theoretical principles as well as specific, usable teaching examples. The clinical oncologist or trainee will find a high-yield, practical guide to the interpretation of the oncology literature and the application of data to real-world settings. Valuable for both researchers and clinicians who wish to sharpen their skills, this book contains all of the cornerstones and explanations needed to produce and recognize quality clinical science in oncology. Written from the physician-scientist’s perspective, the book lays a strong foundation in preclinical sciences that is highly relevant to careers in translational oncology research along with coverage of population and outcomes research and clinical trials. It brings together fundamental principles in oncology with the statistical concepts one needs to know to design and interpret studies successfully. With each chapter including perspectives of both clinicians and scientists or biostatisticians, Principles of Clinical Cancer Research provides balanced, instructive, and high-quality topic overviews and applications that are accessible and thorough for anyone in the field. KEY FEATURES: Gives real-world examples and rationales behind which research methods to use when and why Includes numerous tables featuring key statistical methods and programming commands used in everyday clinical research Contains illustrative practical examples and figures in each chapter to help the reader master concepts Provides tips and pointers for structuring a career, avoiding pitfalls, and achieving success in the field of clinical cancer research Access to fully downloadable eBook

Deep Learning For The Life Sciences

Deep Learning for the Life Sciences PDF

Get This Book

Author: Bharath Ramsundar
Publisher: O'Reilly Media
ISBN: 1492039802
Size: 73.51 MB
Format: PDF
Category : Science
Languages : en
Pages : 238
View: 1306


Deep learning has already achieved remarkable results in many fields. Now it’s making waves throughout the sciences broadly and the life sciences in particular. This practical book teaches developers and scientists how to use deep learning for genomics, chemistry, biophysics, microscopy, medical analysis, and other fields. Ideal for practicing developers and scientists ready to apply their skills to scientific applications such as biology, genetics, and drug discovery, this book introduces several deep network primitives. You’ll follow a case study on the problem of designing new therapeutics that ties together physics, chemistry, biology, and medicine—an example that represents one of science’s greatest challenges. Learn the basics of performing machine learning on molecular data Understand why deep learning is a powerful tool for genetics and genomics Apply deep learning to understand biophysical systems Get a brief introduction to machine learning with DeepChem Use deep learning to analyze microscopic images Analyze medical scans using deep learning techniques Learn about variational autoencoders and generative adversarial networks Interpret what your model is doing and how it’s working

Einf Hrung In Machine Learning Mit Python

Einf  hrung in Machine Learning mit Python PDF

Get This Book

Author: Andreas C. Müller
Publisher: O'Reilly
ISBN: 3960101120
Size: 35.66 MB
Format: PDF, Docs
Category : Computers
Languages : de
Pages : 378
View: 6002


Machine Learning ist zu einem wichtigen Bestandteil vieler kommerzieller Anwendungen und Forschungsprojekte geworden, von der medizinischen Diagnostik bis hin zur Suche nach Freunden in sozialen Netzwerken. Um Machine-Learning-Anwendungen zu entwickeln, braucht es keine großen Expertenteams: Wenn Sie Python-Grundkenntnisse mitbringen, zeigt Ihnen dieses Praxisbuch, wie Sie Ihre eigenen Machine-Learning-Lösungen erstellen. Mit Python und der scikit-learn-Bibliothek erarbeiten Sie sich alle Schritte, die für eine erfolgreiche Machine-Learning-Anwendung notwendig sind. Die Autoren Andreas Müller und Sarah Guido konzentrieren sich bei der Verwendung von Machine-Learning-Algorithmen auf die praktischen Aspekte statt auf die Mathematik dahinter. Wenn Sie zusätzlich mit den Bibliotheken NumPy und matplotlib vertraut sind, hilft Ihnen dies, noch mehr aus diesem Tutorial herauszuholen. Das Buch zeigt Ihnen: - grundlegende Konzepte und Anwendungen von Machine Learning - Vor- und Nachteile weit verbreiteter maschineller Lernalgorithmen - wie sich die von Machine Learning verarbeiteten Daten repräsentieren lassen und auf welche Aspekte der Daten Sie sich konzentrieren sollten - fortgeschrittene Methoden zur Auswertung von Modellen und zum Optimieren von Parametern - das Konzept von Pipelines, mit denen Modelle verkettet und Arbeitsabläufe gekapselt werden - Arbeitsmethoden für Textdaten, insbesondere textspezifische Verarbeitungstechniken - Möglichkeiten zur Verbesserung Ihrer Fähigkeiten in den Bereichen Machine Learning und Data Science Dieses Buch ist eine fantastische, super praktische Informationsquelle für jeden, der mit Machine Learning in Python starten möchte – ich wünschte nur, es hätte schon existiert, als ich mit scikit-learn anfing! Hanna Wallach, Senior Researcher, Microsoft Research

Big Data And Health Analytics

Big Data and Health Analytics PDF

Get This Book

Author: Katherine Marconi
Publisher: Auerbach Publications
ISBN: 9781482229233
Size: 53.21 MB
Format: PDF
Category : Business & Economics
Languages : en
Pages : 382
View: 2894


Data availability is surpassing existing paradigms for governing, managing, analyzing, and interpreting health data. Big Data and Health Analytics provides frameworks, use cases, and examples that illustrate the role of big data and analytics in modern health care, including how public health information can inform health delivery. Written for health care professionals and executives, this is not a technical book on the use of statistics and machine-learning algorithms for extracting knowledge out of data, nor a book on the intricacies of database design. Instead, this book presents the current thinking of academic and industry researchers and leaders from around the world. Using non-technical language, this book is accessible to health care professionals who might not have an IT and analytics background. It includes case studies that illustrate the business processes underlying the use of big data and health analytics to improve health care delivery. Highlighting lessons learned from the case studies, the book supplies readers with the foundation required for further specialized study in health analytics and data management. Coverage includes community health information, information visualization which offers interactive environments and analytic processes that support exploration of EHR data, the governance structure required to enable data analytics and use, federal regulations and the constraints they place on analytics, and information security. Links to websites, videos, articles, and other online content that expand and support the primary learning objectives for each major section of the book are also included to help you develop the skills you will need to achieve quality improvements in health care delivery through the effective use of data and analytics.

Data Science For Healthcare

Data Science for Healthcare PDF

Get This Book

Author: Sergio Consoli
Publisher: Springer
ISBN: 3030052494
Size: 13.79 MB
Format: PDF, Mobi
Category : Computers
Languages : en
Pages : 367
View: 431


This book seeks to promote the exploitation of data science in healthcare systems. The focus is on advancing the automated analytical methods used to extract new knowledge from data for healthcare applications. To do so, the book draws on several interrelated disciplines, including machine learning, big data analytics, statistics, pattern recognition, computer vision, and Semantic Web technologies, and focuses on their direct application to healthcare. Building on three tutorial-like chapters on data science in healthcare, the following eleven chapters highlight success stories on the application of data science in healthcare, where data science and artificial intelligence technologies have proven to be very promising. This book is primarily intended for data scientists involved in the healthcare or medical sector. By reading this book, they will gain essential insights into the modern data science technologies needed to advance innovation for both healthcare businesses and patients. A basic grasp of data science is recommended in order to fully benefit from this book.

Secondary Analysis Of Electronic Health Records

Secondary Analysis of Electronic Health Records PDF

Get This Book

Author: MIT Critical Data
Publisher: Springer
ISBN: 3319437429
Size: 48.45 MB
Format: PDF, ePub
Category : Medical
Languages : en
Pages : 427
View: 6415


This book trains the next generation of scientists representing different disciplines to leverage the data generated during routine patient care. It formulates a more complete lexicon of evidence-based recommendations and support shared, ethical decision making by doctors with their patients. Diagnostic and therapeutic technologies continue to evolve rapidly, and both individual practitioners and clinical teams face increasingly complex ethical decisions. Unfortunately, the current state of medical knowledge does not provide the guidance to make the majority of clinical decisions on the basis of evidence. The present research infrastructure is inefficient and frequently produces unreliable results that cannot be replicated. Even randomized controlled trials (RCTs), the traditional gold standards of the research reliability hierarchy, are not without limitations. They can be costly, labor intensive, and slow, and can return results that are seldom generalizable to every patient population. Furthermore, many pertinent but unresolved clinical and medical systems issues do not seem to have attracted the interest of the research enterprise, which has come to focus instead on cellular and molecular investigations and single-agent (e.g., a drug or device) effects. For clinicians, the end result is a bit of a “data desert” when it comes to making decisions. The new research infrastructure proposed in this book will help the medical profession to make ethically sound and well informed decisions for their patients.

Maschinelles Lernen

Maschinelles Lernen PDF

Get This Book

Author: Ethem Alpaydin
Publisher: Walter de Gruyter GmbH & Co KG
ISBN: 3110617897
Size: 77.47 MB
Format: PDF, Docs
Category : Computers
Languages : de
Pages : 655
View: 3762


Das maschinelle Lernen ist zwangsläufi g eines der am schnellsten wachsenden Gebiete der Computerwissenschaft. Nicht nur die zu verarbeitenden Datenmengen werden immer umfangreicher, sondern auch die Theorie, wie man sie verarbeiten und in Wissen verwandeln kann. Maschinelles Lernen ist ein verständlich geschriebenes Lehrbuch, welches ein breites Spektrum an Themen aus verschiedenen Bereichen abdeckt, wie zum Beispiel Statistik, Mustererkennung, neuronale Netze, künstliche Intelligenz, Signalverarbeitung, Steuerung und Data Mining. Darüber hinaus beinhaltet das Buch auch Themen, die von einführenden Werken häufi g nicht behandelt werden. Unter anderem: Überwachtes Lernen; Bayessche Entscheidungstheorie; parametrische und nichtparametrische Statistik; multivariate Analysis; Hidden-Markow-Modelle; bestärkendes Lernen; Kernel-Maschinen; graphische Modelle; Bayes-Schätzung und statistischen Testmethoden. Da maschinelles Lernen eine immer größere Rolle für Studierende der Informatik spielt, geht die zweite Aufl age des Buches auf diese Veränderung ein und unterstützt gezielt Anfänger in diesem Gebiet, unter anderem durch Übungsaufgaben und zusätzlichen Beispieldatensätzen. Prof. Dr. Ethem Alpaydin, Bogaziçi University, Istanbul.

Medinfo 2001

MEDINFO 2001 PDF

Get This Book

Author: Vimla L. Patel
Publisher: Ios PressInc
ISBN: 9781586031947
Size: 26.19 MB
Format: PDF, ePub, Mobi
Category : Medical
Languages : en
Pages : 1571
View: 356


Technological infrastructure - Standards for interworking - Human-computer interaction - Knowledge representation - Information management - Decision support - Electronic patient records - Health information systems - Patient care aspects/telematics.

Big Data Analytics

Big Data Analytics PDF

Get This Book

Author: Saumyadipta Pyne
Publisher: Springer
ISBN: 8132236289
Size: 49.36 MB
Format: PDF
Category : Computers
Languages : en
Pages : 276
View: 4079


This book has a collection of articles written by Big Data experts to describe some of the cutting-edge methods and applications from their respective areas of interest, and provides the reader with a detailed overview of the field of Big Data Analytics as it is practiced today. The chapters cover technical aspects of key areas that generate and use Big Data such as management and finance; medicine and healthcare; genome, cytome and microbiome; graphs and networks; Internet of Things; Big Data standards; bench-marking of systems; and others. In addition to different applications, key algorithmic approaches such as graph partitioning, clustering and finite mixture modelling of high-dimensional data are also covered. The varied collection of themes in this volume introduces the reader to the richness of the emerging field of Big Data Analytics.

Back to Top